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DR TASRLE

I. INTRODUCTION

Although contours such as circular error probabilities (CEPs), error
ellipses, etc., are frequently encountered in engineering problems, their
meaning is often misunderstood. For example, it is not common knowledge in

the engineering community that a lo (three-dimensional) ellipsoid carries a

different probability confidence level than a lo (two-dimensional) ellipse, or

for that matter a lo (one-dimensional) line segment. Also, there is confusion

over the relationship between elliptical and sphecical error contours.

This report attempts to clarify this situation. To help explain, results
are presented heuristically, without rigorous derivation. The discussion
begins with a brief review of the properties of the "normal” probability
distribution.
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I1. THE NORMAL CURVE

The most commonly encountered probability distribution in statistics is
the so-called "normal™ or “"Gaussian™ distribution presented in Fig, 1. Here,
the abscissa corresponds to the observations y. The total area under the
curve is equal to unity and the area lying between specified abscissa points

is a measure of the relative frequency of observations between these limits.

The normal curve is completely specified by two parameters, the mean u
and the standard deviation 0. Note that the curve is "bell-shaped” and sym-

metric with respect to a line drawn perpendicular to the abscissa at the mean.

The standard deviation o defines the spread of the curve. Figure 2
exhibits three normal curves having equal means but different standard devia-
tions, Curve A with the largest spread has the largest standard deviation and
Curve C the smallest. The symmetric property of the normal distribution re-
quires that 50 percent of the observations fall below the mean and 50 percent
ahove it. In terms of probability, the probavility for an observation falling
either above or below the mean is 0.50. Approxzimately 34 percent of the ob-
servations lie in the interval u to u + o. Thus, from the symmetric property,

the probability of an observation falling between u -~ ¢ and u + ¢ is 0.68.

Since ¥ and ¢ uniquely define a normal distribution, unique probabilities
can be assigned to all regions within this distribution. Thus, Table 1l pre-
sents probabilities p (k) assoniated with selected u =~ ko to u + ko limits.
This table indicates, for example, that 95 percent of the observations lie in
the region specified by k = 1,960 fromu - 1.960 0 to u + 1.960 o.

Thus far the discussion has been limited to probabilities associated with

a normally distributed scalar variable. In the next section, the scope of the

discussion is extended to encompass variables of two and three dimensions.
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* 13
L Table 1. Table of p(k) vs. k for One-Dimensional Normal Distribution
P
é ] p(k) k
B
J % 0.05 0.0627
i 0.10 0.126
L 0.15 0.189
P 0.20 0.253
b 0.25 0.319
i 0.30 0.385 E
Z 0.35 0.454
3 0.40 0.524
: 0.45 0.598
P 0.50 0.674
) 0.55 0.755
; 0.60 0.842
' 0.65 0.935
; 0.70 1.036 3
i 0.75 1.156 :
: 0.80 1.282 4
' 0.85 1.440 3
, 0.90 1,645 4
: 0.95 1.960 ‘
i 4
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Il1. ERROR ELLIPSES AND ELLIPSOIDS

Let x and y denote perpendicular axes lying in a plane. Assume that
independent normally distributed observations along these axes have means ux
and uy and standard deviations ox and °y’ respectively (Fig. 3). The lo error
ellipse, pictured in Fig. 3 {s defined as that ellipse centered at (ux, uy)
with principal semiaxes of o, and oy. Similarly, iJor any real number k, the
ko ervor ellipse (k = 1,2,3, (..) is centered at (px, uy) with principal

semiaxes of ko and ko .
x y

In an analogous manner, let x, vy, and z define three orthogonal coordi-
nates in space. Again, assume independent normally distributed observations
along these axes with means denoted by ux. uy, M, and standard deviations by

ox, o, 9, (Fig. 4). Then, the ko error ellipsoid i{s defined as that ellip-

y
soid centered at (u , u , u_ ) with principal semiaxes k¢ , ko , ko_. One
x>y Tz X y z

octant of a lo error ellipsoid is given in Fig. 4.

Let pn(k) denote the probability that a given observation falls within a
ko error contour of n-dimensions; n of 1, 2, and 3 corresponding to line
segments, ellipses and ellipsolds, respectively. This probablility is obtained
directly from the so-called “chi-square” probability distribution with n
degrees-of~freedom; n = 1 yielding the normal distribution discussed in the

previous section.

Tables 2 and 3, taken from Ref. l, extend the one-dimensional results of
Table 1 to two and three-dimensions. These tables reveal that probability
confidence levels decrease with increasing dimension. Thus, for example, the
lo levels are:

py (1) = 68% ~ line segment (one~dimension)
Py (1) = 39% ~ ellipse (two-dimensions)
P3 (1) = 20% - ellipsoid - three-dimensions)

Here, specifically, p; (1) is the probabiliiy that a sirgle random variable
lies within its lo limits. However, P (1) and Py (1) are probabilities that
all random components lie within the bounding ellipse or ellipsoid. In short,
for n > 1, p, (1) assumes simultaneity, while p; (1) does not. Indeed, p, (k)
is always smaller than Py (k) (Fig. 5).

11
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Table 2. Table of k for Selected p, (k) d
i
n 3

5

Pn (k) 1 2 3 §
0.05 0.0627 0. 320 0.593 .
0.10 0.126 0.459 0.754 :

0.15 0.189 0.570 0.893 | %

0.20 0.253 0.668 1.003 | §

0.25 0.319 0.759 1.101 i

0.30 n.385 0.844 1.193 -

0.35 0. 454 0.928 1.281 i

0.40 0.524 1.011 1.367 ) ;

0.45 0.598 1.093 1.452 :

0.50 0.674 1.177 1.538 .

0.55 0.755 1.264 1.626 Y

0.60 0.842 1.354 1.716 H

0.65 0.935 1,449 1.812 ]

0.70 1.036 1.552 1.914 =

0.75 1,156 1.665 2.027 .

0.80 1.282 1.794 2.154 .

0.85 1. 440 1.948 2.306 L

0.90 1,645 2,146 2.500 P 3

0.95 1.960 2,448 2.796 : 3

0.98 2.326 2.797 3.1% f "il

0.99 2.576 3.035 3,368 j

0.995 2.807 3,255 3,583 ;

14
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S
G
v
E} ? n
i
T
J 4 k 1 2 3 ,
i ]
Lo 0.2 0.158 0.0198 0.00210 =
6 0.4 0.311 0.0769 0.0162 3
Eg : 0.6 0.451 0.164 0.0516
P 0.8 0.576 0.274 0.113 4
L
. 1.0 C. 683 0.393 0.199 &
: 2.0 0.954 0.865 0.739 H
3.0 0.997 0.989 0.971 -
, 4.0 1.000 1.000 0.999 ]
: . 5.0 1.000 1,000 1.000 |
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IV. SPHERICAL ERROR CONTOURS

One disadvantage of displaying results in terms of error ellipses or
ellipsoids is that several numbers are required. For example, the specifica-
tion of an error ellipse requires three numbers, the magnitude of the two
principal axes and an orientation angle. Similarly, six numbers are required
to specify an ellipsoid, the magnitudes of the three principal axes and three

orientation angles.

A possible alternative is to present results in terms of circles or
spheres having a particular probability level. Although this approach may
seem appealing at first, it has some disadvantages. Unless the principal axes
cf the ellipse or ellipsoid are nearly equal, use of the corresponding circle
or sphere can lead to serious errors in engineering judgment, since all infor-
mation regarding preferred directions is lost. In addition, the desired ra-
dius is not easily determined. Special algorithms for this computation are
given (Refs. 2, 4). The cases where py (k) = 0.50 and p4 (k) = 0.50 corre~
spond, respectively, to the well-known circular error probability (CEP) and
spherical error probability (SEP). From Table 2, these last carry probability
levels equal to those of the 1.177-¢ ellipse and the 1,538-0 ellipsoid.

A procedure for computing both the 50 and 95 percent probability circles
from the principal semiaxes of the lo ellipse is presented in Appendix A.
This technique uses linear interpolation between values of the principal semi-

axes and radius as listed in the extensive tables of Ref. 3.

17
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; V. COMPARISON OF TWO-DIMENSIONAL ERROR CONTOURS 1

e Ly

The analog in two-dimensions to the one-dimensional Gaussian distribution
; in Fig. 1 is presented in Fig. 6. t!laintaining previous notation, x and y lie
along the principal axes of the error ellipse, and f is the frequency of the

observations, while x” and y” are the observation axes in the x-y plane. It

e A e

is observed in this figure, and indeed in general, that principal and observa-

tlon axes are not collinear. In statistical terms, this means the observa-

T -y -
N

tions are correlated. The probability surface is depicted as a "mountain”

symmetric about the two planes containing the f-axis and one principal axis.

e

The total volume under the surface is equal to unity. Thus, the volume
intercepted by circular or elliptical cylinders with axes parallel to f is a

measure of the frequency of observations within the enclosed area on the x° -

MERL ML REE AL & LB Tlad

y® plane. Of course, circular cylinders yield circular intercepts such as the
: ' CEP and 95 percent probability circle, while error ellipses result from
{ ‘ elliptical cylinders.
H H

;7 . Figure 7 exhibits a family of ellipses for the two-dimensional normal
distribution of Fig. 6., These ellipses, all of which have major to minor axis
ratios of five to one, are obtained by slicing the probability "mounrain” d

!
k
g parallel to the x-y plane at various heights along the f-axis.

Five of the more commonly encountered contours associated with this
probability distribution; the 1, 2 and 30 ellipses, CEP, and 95 percent
circle, are illustrated in Fig. 8. Superimposed upon this figure are
computer-generated points randomly selected from a population with the same

probability distribution.

One immediately notes that the elliptical representations contain much
more I1nformation about the distributfon of the points. Thus, for this exam-
ple, the 30 ellipse encloses more points than does the 95 percent circle while
requiring only about half the area. As a general rule, elliptical contours

are preferable except when the magnitudes of the principal axes are nearly

equal.
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VI. SUMMARY

: . In ascertaining the relative merits of elliptical vs. spherical error

contours in reporting system errors, the more weighty arguments can be ad-

do the error ellipse and ellipsoid

RN U R

vanced in favor of the former. Not only

convey more information than the CEP and SEP, they are actually easier to

compute. The sole argument favoring the latter pair is that their specifica-
tion requires only a single number.

However, the utiliration of lg ellipses (or ellipsoids) can be very mis-

leading to the uninitiated. Thus, the temnptation to assume that the lo

ellipse encloses at least a majority of cases, as does the one-dimensional

1o line segment, is overwhelming. The truth is that the lo ellipse subtends

only 39 percent of the cases. The situation [s even more exaggerated in

three-dimensions, where the 1o ellipsold encloses only 20 percent of the

. cases. The alternative is clear. Instead of using lo ellipses (or ellip-

soids) one should use 50 or 95 percent ellipses (or ellipsoids). Here the

. name itself indicates the percentage of cases subtended and no confusion
results.
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APPENDIX

COMPUTATION OF S0 AND 95 PERCENT PROBABILITY CIRCLES
FROM THE PRINCIPAL AXES OF THE lo ERROR ELLIPSE

N

2]

This appendix contains a technique for computing the radii of the 50 and

oon e

95 percent probability circles, R50 and R95, from the major and minor semiaxes
of the lo error ellipse, denoted A maj and A min respectively. 1In particular,
the desired radius R is obtained by linear interpolation betwcen values of
A maj, A min and probability as listed in the tables of Ref. 3. The use of

linear interpolation is justified by the observation that the normalized

quantities A min / XA maj and R/ A maj are nearly linearly related over wide

regions.

Begin by defining the four 10-dimensional vectors

fon e rap ey

Y50 = (0.6820, 0.7059, 0.7499, 0.8079, 0.8704, 0.9336,

et £ L e Bk g e n Lo SEUl bl e i ERE u.:‘uwwwﬁmrﬂmmm-3:5&1‘1(&“%&%31%#”%%5%%lﬁ?ﬁﬂmiﬂw*' w

: 0.9962, 1.0577, 1.1181, 1.1774)

E SLSO = (0,0075, 0,02386, 0.04408, 0.05792, 0.06256,

E 0.06323, 0,06256, 0.06149, 0.06036, 0.05935)

i Y95 = (1.962, 1.970, 1.984, 2,005, 2,036, 2.081, 2,146,

: 2.230, 2,332, 2,448)

E SL9S = (0.006, 0.008, 0.014, 0.021, 0.031, 0.045, 0.065,

{ 0.084, 0.102, 0.116)

E where the Y's and SL's represent values of R / A maj and slope associated with

g intervals of O.1 in A min / A maj for the 50 and 95 percent radii. The proper

f component of the Y and SL vectors, I, and the interpolation interval, DEL, are : ‘54

; computed from i .

§ X = 10 A min / A maj :

% 1 = Integer part of X + 1 or 10 whichever is smaller 3
DEL = X -1 (

; b Then the desired radii result directly from linear interpolation via ‘

RS0 = [YS0(I) + SLSO(I) DEL]) A maj
R9S = {Y95(I) + SL9S(I) DELj X maj
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